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Abstract. We propose an extension of the spectroscopic Monte Carlo method to realistic effective in-
teractions. The scheme is applied to the recently introduced GXPF1 interaction for fp nuclei for the
ground state of 60Fe, 56Ni, 64Ni and 60Zn. The method hinges on the use of Hartree-Fock-Bogoliubov
wave functions (properly projected before variation) and on a reformulation of the effective interaction so
that it is a sum of negative squares of Hermitian one–quasi-particle operators, so the application of the
Hubbard-Stratonovich transformation to the elementary propagator exp[−Ĥ] gives a functional integral
over a Hermitian propagator. Limitations and difficulties encountered in the calculation are discussed.

PACS. 21.60.-n Nuclear structure models and methods – 21.60.Ka Monte Carlo models

The shell model approach is the fundamental tool used
in studying the structure of light nuclei. There are two in-
gredients which allow the feasibility of such studies. One
is the knowledge of an effective nucleon-nucleon interac-
tion among the valence particles. The other is the actual
diagonalization of the large Hamiltonian matrix. With
presently available computer resources, many fp shell nu-
clei seem to be reachable (for a recent review see, for ex-
ample, ref. [1]). Whenever the size of the Hilbert space
exceeds present-day computational capabilities, either a
truncation of the Hilbert space is necessary or one uses
variational approaches, with increasing degree of com-
pleteness. Among these latter, the most sofisticated are
the FED VAMPIR approaches (along with the variant for
the excited states) (refs. [2–4]). In these approaches the
ground state is written as a sum of quasi-particle vacua
properly projected to the exact quantum numbers before
variation of the energy. In the quantum Monte Carlo di-
agonalization method the Hubbard-Stratonovich transfor-
mation (ref. [5]) is used to generate a many-body basis,
which is then optimized, starting from the HF approxima-
tion (HFB is used for heavy nuclei) in which the Hamil-
tonian matrix is subsequently diagonalized (ref. [6]). Both
approches tend to include increasingly more of the full
Hilbert space as the basis is increased. From the point of
view of the shell model Monte Carlo methods (refs. [7,
8]) instead, one encounters the so-called sign problem
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which prevents reasonable statistical accuracy from be-
ing reached, in the case one uses realistic effective inter-
actions. In the past, in order to circumvent this problem,
an extrapolation method was proposed (ref. [7]). In this
method the original Hamiltonian is rewritten as a sum of
a “good part” for which a Monte Carlo calculation can be
performed and a “bad part”, Ĥ = Ĥgood + gĤbad. The
original Hamiltonian has g = 1, but can be studied with
Monte Carlo methods for any g < 0. The extrapolation
method consists in performing a sequence of Monte Carlo
calculations for several g < 0 values and extrapolating
for g = 1. As shown in ref. [9], the method is reasonable
for light systems in the fp region but it can give discrep-
ancies as large as 2 Mev for the ground-state energy of
64Ni using the KB3 effective interaction. Although there
is no reason to believe that no extrapolation can repro-
duce the shell model results, one notices that there are no
direct Monte Carlo calculations with realistic effective in-
teractions, that is calculations performed exclusively with
the Hamiltonian of choice, whithout resorting to auxiliary
potentials and to extrapolation methods. The purpose of
this Letter is to describe a few Monte Carlo calculations
performed directly with the newly introduced GXPF1 ef-
fective interaction (ref. [10]) for the ground state of the
fp shell nuclei 60Fe, 56Ni, 64Ni and 60Zn. The main idea
is to modify the spectroscopic Monte Carlo method of
ref. [11]. This method was used primarily with the pairing-
plus-quadrupole model (which in the SMMC approach for
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the ground state does not necessitate the extrapolation
method) and recently (ref. [12]) with the addition of the
quadrupole pairing potential (which violates the sign pre-
scription of ref. [7], and therefore necessitates the extrapo-
lation method in the SMMC approach) and is based on the

following idea. The imaginary time propagator exp(−βĤ)
applied to reasonable accurate wave functions |NZJM〉
necessitates only small values of β in order to filter the
ground state out of the approximate wave function. Good
wave functions, such as the HFB wave functions, require
projectors to good quantum numbers. When the Hubbard-
Stratonovich transformation is applied to the evaluation
of the numerator and denominator of the energy equation

E(β,N,Z, J) =

〈ψNZ|P̂JJĤe−β(Ĥ−ωĴz−µnN̂n−µpN̂p)|ψNZ〉
〈ψNZ|P̂JJe−β(Ĥ−ωĴz−µnN̂n−µpN̂p)|ψNZ〉

, (1)

where P̂JJ is the angular-momentum projector forM = J
(we included the cranking and the chemical-potential
terms); the angular-momentum projector makes it pro-
hibitively expensive to generate decorrelated Monte Carlo
samples. Instead, with the proper choice of the crank-
ing frequency (for J > 0) and of the chemical potentials,
one generates integration points in the functional integral
without the use of angular-momentum projectors. Only
when a set of statistically independent integration points
have been generated, the angular momentum is restored
for the evaluation of eq. (1). It is crucial, in order to have
reasonably low sign fluctuations, not only to work at not
too large values of β, but also to apply the HS transfor-
mation to a sum of squares of Hermitian one-body (or
one–quasi-particle) operators with negative coupling con-
stants. Schematically, if the Hamiltonian, as we shall prove
shortly, can be written as

Ĥ = Ĥ0 − 1/2
∑

a

kaQ̂
2
a , (2)

where Ĥ0 is the single-particle Hamiltonian and the oper-
ators Q̂a are one-particle (or quasi-particle) Hermitian op-
erators with coupling constants −ka < 0, the HS transfor-
mation applied to the infinitesimal imaginary time prop-
agator exp(−εĤ) gives, for the propagator at finite β,

exp−β(Ĥ − ωĴz − µnN̂n − µpN̂p) =
∫

dxG(x)Ŵ (x) ,

(3)
where x denotes the (multidimensional) integration vari-
ables, G(x) is the Gaussian weight (inclusive of the var-

ious normalization constants) and Ŵ (x) is the propa-
gator, usually of generalized quasi-particle type (as in
refs. [11,12]), and is the time-ordered product of expo-
nentials of Hermitian operators. For small values of β, the
dominant part to the full functional integral is expected
to be dominated by the static component (i.e. the imagi-
nary time average of the time-varying integration variables
x(t)). The necessary inclusion of the quantal fluctuations
(i.e. the time dependence of the integration variables) and

of the projector can change this. Explicitly, the energy of
eq. (1) is evaluated as the ratio of the following two quan-
tities:

E =
Re

∫

dxG(x)〈ψNZ|Ŵ |ψNZ〉 〈ψNZ|P̂JJĤŴ (x)|ψNZ〉

〈ψNZ|Ŵ |ψNZ〉
∫

dx|Re[G(x)〈ψNZ|Ŵ |ψNZ〉]|
,

(4)

O =
Re

∫

dxG(x)〈ψNZ|Ŵ |ψNZ〉 〈ψNZ|P̂JJŴ (x)|ψNZ〉

〈ψNZ|Ŵ |ψNZ〉
∫

dx|Re[G(x)〈ψNZ|Ŵ |ψNZ〉]|
,

(5)

where Re means real part. Both E and O are evaluated
with the Metropolis Monte Carlo method using as a prob-
ability distribution the absolute value of the real part of
G(x)〈ψNZ|Ŵ |ψNZ〉. We stress from the start that the
resulting Monte Carlo calculation does have sign oscilla-
tions, but we are confining ourselves to small β values,
where sign oscillations are irrelevant.
Before proceeding, let us prove eq. (2) for a general

effective interaction. We can take as a starting point the
results obtained in ref. [7] about the density decomposition
of a general effective interaction. In ref. [7] the effective
potential is first rewritten as

V̂ = 1/4
∑√

1 + δab
√

1 + δcd[WJT=0(abcd)

+WJT=1(abcd)]Â
†
JMTTz

(ab)ÂJMTTz (cd) , (6)

where a, b, c, d denote single-particle shells, Â†
JMTTz

(ab)
is the pair creation operator coupled to the angular mo-
mentum J , the third componentM , and the isospin quan-
tum numbers T and Tz. The sum extends over all possible
single-particle shells and all possible values of JMTTz.
Using the anticommutation rules, the potential is written
in terms of density-like operators as

V̂ = V̂1 − 1/2
∑

i

λi[Q̂i(n) + Q̂i(p)]
2 . (7)

V̂1 is a one-body self-energy arising from the anticommu-
tation rules and the operators (which can always be taken

as Hermitian) Q̂i(n, p) (for neutrons or protons) are of the
type

∑

a†a,ma
(qi(n, p))a,ma,b,mb

ab,mb
. If all λi were posi-

tive, the application of the HS transformation would give,
for the propagator inside the functional integral, a time-
ordered product of Hermitian propagators. If some of the
λi are negative, instead, the propagator inside the func-
tional integral is the product of non-Hermitian propaga-
tors and we expect strong sign fluctuations in the Monte
Carlo calculation even if a single time interval were used
(i.e. a small value of β). Clearly, it is more desirable to
have V̂ written as a sum of negative squares of Hermi-
tian operators, so that at least for small values of β the
functional integral is dominated by positive contributions.
For the GXPF1 interaction there are 400 operators Q̂i of
which 118 have a negative value of λ (the largest of which
is a monopole with |λ| ≈ 0.67). The Hamiltonian is con-
veniently rewritten by first extracting all traces out of the
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matrices qi. If we denote explicitly by ξ̂τ =
∑

rs a
†
sξsrar

the modes with negative λτ , we have

Ĥ = C + Ĥ1 −
1

2

∑

λµ>0

[Q̂µ(n) + Q̂µ(p)]
2

−1
2

∑

λτ<0

[ξ̂τ (n)−ξ̂τ (p)]2+
∑

τ

[ξ̂τ (n)
2+ξ̂τ (p)

2] , (8)

where the absolute value of the λi has been reabsorbed in
the definition of the various operators. The single-particle
part (renamed Ĥ1) and the constant C are due to the
extraction of the traces from the monopole part of the
Hamiltonian. The positive terms in eq. (8) can be rewrit-
ten as

∑

τ

ξ̂2τ =
∑

τ

∑

rs

a†r(ξ
2
τ )rsas +

∑

τ

ξτ,rsξτ,ijP̂
†
riP̂sj , (9)

where we introduced the destruction and creation pairing
operators

P̂sj = asaj , P̂ †
ri = a†ia

†
r . (10)

Using the superindices α = (ri), β = (sj) and the matrix
Mα,β =

∑

τ ξτ,rsξτ,ij we arrive at the form

∑

τ

ξ̂2τ =
∑

τ

∑

rs

a†r(ξ
2
τ )rsas +

∑

α,β

P̂ †
αMα,βP̂β . (11)

It is easy to show that the matrix M is Hermitian. In the
diagonal representation, let us set

Mα,β =
1

2

∑

ω

vα,ωΛωv
∗
β,ω . (12)

The coeficient 1/2 is for later convenience. The eigenvec-
tors of M , vα,ω can be classified according to their sym-
metry properties under the exchange of the single-particle
indices α = (ri) → α′ = (ir). They can be either sym-
metric (which are appropriate for bosons) or antisymmet-
ric (for fermions). Since the index α is to be summed in
eq. (11), only the antisymmetric modes will contribute.
There are Ns(Ns−1)/2, where Ns is the number of single-
particle states (that is, 190 antisymmetric modes in our
case), some of them have negative Λ and some of them
have positive Λ. In order to get rid of the positive Λ, we
subtract and add to M the term 1

2gδα,β . After some alge-
bra, we obtain for sufficiently large g so that Λω − g ≤ 0,
∑

τ

ξ̂2τ =
∑

τ

∑

rs

a†r(ξ
2
τ )rs −

1

2

∑

ω

Π̂†
ωΠ̂ω +

1

2
g(N2 −N),

(13)
where

Π̂ω =
∑

β

P̂βv
∗
β,ω

√

−Λω + g, (14)

Π̂†
ω being the Hermitian conjugate of the above. It
should be noted that in eq. (13) there is still the positive
square N2; therefore our formalism cannot be applied
for grand-canonical calculations. It is only in a particle-
number–preserving subspace that the term 1

2g(N
2−N) is

a constant. Since these constants are competely irrelevant
in the construction of the functional integral, they will
be dropped. We can now proceed as usually done in the
treatment of pairing potential. Introducing the quasi-spin
operators

Îxω =
1

2
(Π̂†

ω + Π̂ω), Îyω =
i

2
(Π̂†

ω − Π̂ω) (15)

we arrive at, after evaluating the commutator [Π̂†
ω, Π̂ω]

∑

τ

ξ̂2τ = −
1

2

∑

ω

(Î2
xω + Î

2
yω) + c(N) , (16)

where c(N) is a c-number function of the particle number.
In obtaining this equation we used the property trξτ = 0.
The term a†ξ2τa is cancelled by the commutator [Π̂

†
ω, Π̂ω].

Finally, up to a constant, our original Hamiltonian be-
comes

Ĥ = Ĥ1 −
1

2

∑

λµ>0

[Q̂µ(n) + Q̂µ(p)]
2

−1
2

∑

λτ<0

[ξ̂τ (n)−ξ̂τ (p)]2−
1

2

∑

ω

(Îxω(n)
2+Îyω(p)

2), (17)

where we reintroduced the neutron and proton label (n, p).
Also, in order to shorten the formula we assume that the
cranking term and chemical-potential terms have already
been included in the single-particle part Ĥ1. We shall call
this expression the Hermitian decomposition of the Hamil-
tonian and stress that it can only be used in the subspace
of the Hilbert space with a definite value of the particle
number.
The Hubbard-Startonovich transformation applied to

eq. (17) gives, apart a normalization constant

exp[−βĤ] =
∫

dxG(x)Ŵ (n)Ŵ (p) , (18)

where the volume element dx is

dx =

Nt
∏

m=1

[

∏

µ

dσµm
∏

τ

dητm
∏

t=n,p

∏

ω

(dφxmtωdφymtω)

]

(19)
with Nt being the number of time intervals, σµm, m =

1, . . . , Nt the fields associated with the Q̂2 terms,

ητm, m = 1, . . . , Nt the fields associated with the ξ̂
2 terms

and φxmtω and φymtω the fields associated with the Î
2
x and

Î2
y terms. The terms contained in the Gaussian weight are
the following:

see eq. (20) below

with the single-particle matrices K(n) and K(p) (respec-
tively for the neutrons and for the protons) given by
eq. (22) below. The propagators in eq. (18) for the neu-

trons Ŵ (n) and for the protons Ŵ (p) are the time-ordered
products (t = n, p)

Ŵ (t) =

Nt
∏

m=1

exp

[

1

2
(a†a)

(

K −ψ∗

ψ −K̃

)(

a
a†

)]

; (21)
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G(x) = e
−1/2

∑

Nt

m=1

[

∑

µ
σ2

µm+
∑

τ
η2

τm+
∑

ω,t=n,p
(φ2

xmtω+φ2

ymtω)

]

+1/2(trK(n)+trK(p)
(20)

here we have used a matrix notation so, for example, (a†a)
is the row vector (a†r, ar) and

K = −εh1 −
√
ε
∑

µ

σµmqµ −
√
εst

∑

τ

ητmξτ (22)

with st = +1,−1 for t = n, p. h1 is the single-particle
Hamiltonian (after the addition of chemical potentials,
cranking terms and rearrangements terms due to the ex-
traction of the traces out of qµ and ξτ appearing in

Ĥ1 = a†h1a. The antisymmetric matrix ψ (one for the
neutrons and one for the protons) is given by

ψrs =
√
ε
∑

ω

v∗rs,ω[φxmω + iφymω]
√

−Λω + g ; (23)

here we have replaced the superindex α by the pair of
single-particle indices. Obviously only the antisymmetric
modes are included in the sum over ω. The derivation
of eqs. (18)-(23) parallels the one given in ref. [11] for
the pairing+quadrupole model. These expressions are the
ones appearing in eqs. (4) and (5).
In principle, the energies evaluated using eq. (1) are

independent of the cranking frequencies and of the chem-
ical potentials. However, the values of these parameters
can affect the variances in the Monte Carlo evaluation of
eqs. (4) and (5). While in our previous experience in the
rare-earth region it was simple to determine their values
using only the mean-field approximation to the functional
integrals, in the case of the GXPF1 interaction we find
that all gaps associated with the pairing terms in mean-
field propagators are zero. This means that the mean-
field propagators conserve the particle number, that is,
the mean-field is insensitive to the values of the chemical
potentials. Therefore, the recipe for the determination of
the chemical potentials used in our previous work (ref. [11]
and references therein) breaks down for this Hamiltonian.
This is perhaps the strongest difficulty encountered in the
calculations we shall discuss shortly. As a way out, we
added a volume element of the type ln[φ2

xω] to the ac-
tion exploiting the gauge symmetry of the pairing fields,
and taking φyω = 0. This prescription generates a strong
chemical-potential dependence of the matrix elements of
the propagator at the mean-field level. However, the chem-
ical potentials obtained in this way are not always satis-
factory (presumably weak pairing modes should not be
included). This is a problem not completely understood.
In the calculations, we took reasonable values not incon-
sistent with the single-particle energies.
The matrix elements of the GXPF1 potential are

scaled according to the mass as done in ref. [10]. As trial
wave functions, we have used VAMPIR-like wave functions
(ref. [2]). We did not however project onto good isospin
T , but rather, we took the wave function to be a product
of a neutron and a proton wave functions. The VAMPIR

wave functions are notoriously difficult to determine, and
we stopped the variational calculation when the average
absolute value of the energy gradient (the residual gra-
dient) is of the order of 10−3 or smaller. We considered
β = 0.1 MeV−1 and β = 0.15 MeV−1 (see footnote 1).
For the nuclei considered in this work, we obtained the
following results (all energies and chemical potentials are
in MeV, and all values of β are in MeV−1).

For 60Fe the ground-state energy of the VAMPIR wave
function is −228.492 (the residual gradient is 4 · 10−4),
the Monte Carlo estimate of the energy is, at β = 0.1,
E(β) = −228.802 ± 0.094 (with 99 samples having a
residual autocorrelation of 0.004), and at β = 0.15,
E(β) = −229.217 ± 0.244 (with 116 samples and a resid-
ual autocorrelation of −0.03). The exact shell model value
(ref. [13]) is Eshm = −228.923. At β = 0.1 the n and p
chemical potentials are −1. and −3.1. At β = 0.15 the
chemical potentials were determined with the mean-field
method as in ref. [11], taking into account the volume el-
ements of the pairing fields; the values are 9 and −8.9
for neutrons and protons, respectively. Their value is hard
to reconcile with the single-particle energy levels and it
constitutes one of the difficulties previously mentioned. It
should however be pointed out that the Hamiltonian of
eq. (17) differs from the original Hamiltonian by a real
function of the neutron and proton numbers that can af-
fect the values of the chemical potentials. Although diffi-
cult to understand, they do not seem to affect the Monte
Carlo result for the energy. For 64Ni the energy of the
VAMPIR wave function is −281.508 (residual gradient
0.0004). We performed the Monte Carlo calculation only
at β = 0.1 and obtained E(β) = −281.868 ± 0.141 with
103 samples (residual autocorrelation 0.02) using n and
p chemical potentials equal to −3.1. This calculation was
the first performed, before we added the volume element
in the determination of the chemical potentials. After the
recipe was modified, the calculation was repeated with the
values 18.4 and −7.8 (for n and p, respectively), and we
obtained E(β) = −281.656±0.039. The exact shell model
value of ref. [13] is −281.780. For the much more stud-
ied nucleus 56Ni, which closes the f7/2 shell, the energy of
the VAMPIR wave function is −206.058 (residual gradient
0.0035), the Monte Carlo calculation gave E(β = 0.1) =
−206.119 ± 0.033 and E(β = 0.15) = −206.066 ± 0.148
(the number of samples and the residual autocorrelations
are 94 and 123 and 0.12 and −0.09, respectively). The
shell model value obtained with up to 7 excitations out of
the f7/2 shell is (ref. [13]) E = −206.269. In this case the

1 The variable β should not be confused with the inverse
temperature, as we are not evaluating canonical partition func-
tions, but it is rather a positive parameter which controls the
quality of the wave function exp(−βĤ)|ψNZ〉. The better the
trial wave function, the smallest the value of β necessary to
converge to the ground state.
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values we obtained are slightly higher than the shell model
value. For the last case, 60Zn, we had problems point-
ing out to a poor understanding of the chemical-potential
problem, or perhaps to a not so good trial wave function
for N = Z (it should be recalled that we do not perform
a T 2 projection). The VAMPIR wave function has an en-
ergy of −254.848 (residual gradient 0.0015), at β = 0.1
the Monte Carlo energy is −254.974 ± 0.219, at β = 0.15
the statistics was ruined by a single energy sample re-
quiring probably several hundred samples to recover good
statistics. The shell model ground-state energy, inclusive
of up to 5 excitations of the f7/2 shell, is −255.502. Be-
cause of this problem, we considered the value β = 0.125
instead. The Monte Carlo result for this value of β is
E(β = 0.125) = −255.356 ± 0.164 with 105 samples hav-
ing a residual autocorrelation of −0.13. Although the shell
model result does not include the full Hilbert space and
despite the poorly understood problem of the chemical po-
tentials (we took −0.9 and −0.9 at this value of β), the
Monte Carlo result is quite satisfactory.
In conclusion, we generalized the Hermitian decompo-

sition used in the spectroscopic Monte Carlo method of
refs. [11] and [12] by modifying the decomposition of the
Hamiltonian of ref. [7], and we were able to reproduce rea-
sonably well the shell model energies of selected nuclei in
the fp shell using the realistic GXPF1 effective interac-
tion.

The author is grateful to M. Honma for providing the results
of the shell model calculations with the GXPF1 interaction
mentioned in this work and to A.B. Brown for providing the
computer file of the interaction matrix elements.
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